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The results obtained by Rietveld analysis and numerical

modeling of B–C–N layered clusters with various types of

lattice defects explain the evolution of diffraction patterns of

turbostratic graphite-like BN–C solid solutions which are

experimentally observed at room temperature at pressures up

to 30 GPa. Above 20 GPa a reversible diffusionless transfor-

mation of the initial turbostratic structure takes place, giving a

high-pressure phase formed by close-packed buckled layers

having a diamond-like structure.
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1. Introduction

The structure formed by layers which are parallel and equi-

distant, but random in translation parallel to the layer, with

rotation about the normal is usually called a turbostratic (or

one-dimensionally disordered) structure. Interest in these

structures was stimulated by intensive studies of carbon black

in the middle of the last century (Biscoe & Warren, 1942;

Franklin, 1950, 1951). The quantitative theory of X-ray

diffraction by the random layer lattice has been developed by

Warren (1941) and describes the diffraction patterns of one-

dimensionally disordered graphite-like phases under ambient

pressure (Biscoe & Warren, 1942; Franklin, 1950). Turbostratic

structures have recently attracted attention because many

newly synthesized graphite-like phases (Kaner et al., 1987;

Hubaček & Sato, 1995; Kawaguchi et al., 1996; Shirasaki et al.,

2000; Solozhenko et al., 2002) can be excellent precursors for

the synthesis of advanced superhard materials (Solozhenko et

al., 2001; Onodera et al., 2001; Solozhenko, 2002; Solozhenko

et al., 2004).

The phase transitions of turbostratic carbon and boron

nitride take place at very high (> 2000 K) temperatures and

lead to ordered graphite-like structures (Kurdyumov &

Pilyankevich, 1979). Room-temperature pressure-induced

transformations of turbostratic phases have not been reported

previously.

Recently, Solozhenko et al. (2001) studied in situ phase

transitions of graphite-like BC2N (g-BC2N) up to 30 GPa and

3000 K using a diamond–anvil cell and angle-dispersive X-ray

diffraction with synchrotron radiation. The diffraction

patterns observed under compression at room temperature

indicate the changes in the structure of the starting turbo-

stratic phase. The similarity of the patterns taken above

25 GPa to that of diamond (absence of 001 line, symmetry of

10 line1 and its shift towards the 111 diamond reflection)

1 Following Warren’s approach (Warren, 1941), we use two Miller indices to
denote the two-dimensional reflections.



allows us to make a proposal about the pressure-induced

reconstruction of the sp2 structure of g-BC2N into the

diamond-like sp3 structure.

Pressure-induced martensitic phase transformations have

previously only been observed at room temperature for

highly ordered graphite-like structures of carbon and boron

nitride (Kurdyumov & Pilyankevich, 1979; Ueno et al.,

1992; Britun & Kurdyumov, 2000). In the case of turbostratic

g-BC2N, the transformation cannot be implemented by

any of the known crystallographic mechanisms (Britun &

Kurdyumov, 1999) as the complete one-dimensional

disordering of the initial phase rules out the mart-

ensitic mechanism for the transformation. The low tempera-

ture precludes the operation of the diffusion processes

within the framework of the diffusion-reconstructive

mechanism.

In the present work the behavior of turbostratic BN–C solid

solutions has been studied up to 30 GPa and at room

temperature using X-ray diffraction with synchrotron radia-

tion. With the aim of explaining the observed evolution of the

diffraction patterns, Rietveld analyses of the experimental

patterns and simulated diffraction patterns of layered finite-

size B–C–N clusters with lattice defects of various types were

carried out.

2. Materials

Our starting materials were nano-

powders of turbostratic graphite-like

BN–C solid solutions of various stoi-

chiometry (BC2N, BC4N and BCN),

which were synthesized by the simul-

taneous nitridation of boric acid and

the carbonization of saccharose in

molten urea followed by annealing in

nitrogen at 1770 K (Hubaček & Sato,

1995). The diffraction patterns of all

materials have broad diffraction lines

(001, 10, 002 and 11) which are typical

of turbostratic structures. Interlayer

spacings for BC2N, BC4N and BCN

were found to be 3.63 (2), 3.64 (2) and

3.66 (3) Å, respectively, while the a

parameters have the same value of

2.48 (2) Å.

3. Experimental

Phase transitions of graphite-like

BN–C solid solutions were studied up

to 30 GPa at room temperature using

a large-aperture membrane-type

diamond–anvil cell and angle-disper-

sive X-ray diffraction at beamline

ID30, European Synchrotron Radia-

tion Facility. The experimental setup

is described elsewhere (Solozhenko et

al., 2001). The samples were loaded,

without a pressure medium, in the 100 mm diameter hole

drilled in a rhenium gasket of thickness 250 mm preindented

down to 55 mm. Pressure was determined from the calibrated

shift of the ruby R1 fluorescence line (Mao et al., 1986). The

high-brilliance synchrotron radiation from a two-phased

undulator was set to a wavelength of 0.3738 (1) Å using a

channel-cut Si(111) monochromator. The patterns were

collected using an on-line image-plate FastScan detector

(Thoms et al., 1998). Correction of the two-dimensional

diffraction images for spatial distortions and integration of the

Debye–Scherrer rings were performed using FIT2D software

(Hammersley, 1995).

4. Calculation methods

The approximation of absolutely flat and equidistant layers

that are randomly displaced and turned relative to each other

[which is used in the Warren approach (Warren, 1941) to

depict turbostratic defects in layered structures] allows the

diffraction patterns of graphite-like structures at ambient

pressure to be adequately described. However, this approx-

imation does not allow the diffraction patterns observed under

pressure to be described. This is likely due to the generation of

defects of other types in addition to the turbostratic ones.
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Table 1
Initial and resulting pseudo-unit cells (triclinic syngony, P1 space group).

Lattice parameters: � = � = � = 90�.

Cell Description
Lattice
parameters (Å) Atomic coordinates

g0 Graphite layer a = 4.3371 (xg0(i), yg0(i), 0)
b = 2.5041 xg0 = [1/3 2/3 1/6 5/6]

yg0 = [0 0 1
2

1
2]

d0 Diamond layer a = 4.3686 [xd0(i), yd0(i), zd0(i)]
b = 2.5222 xd0 = xg0

(c = 12.354) yd0 = yg0

zd0 = [�z1 0 0 �z1]
z1 = 0.0416

g1 Randomly buckled a = 4.3371 [xg0(i), yg0(i), f4(x,y,z)]
graphite layer b = 2.5041

(c = 33.331)
g2 Graphite layer with a = 4.3371 (xg0, yg0, k�zd0)

diamond-like buckling b = 2.5041 k 2 [0; 1]
(c = 12.354)

G0 Graphite a = 4.3371 [xg0(i), yg0(i), z1(j)]
(10 layer cell) b = 2.5041 [xg0(i) + 1

3, yg0(i), z2(j)]
c = 33.331 z2 = [0 0.2 0.4 0.6 0.8]]

z3 = [0.1 0.3 0.5 0.7 0.9]
D0 Diamond a = 4.3686 [xd0(i), yd0(i), zd0(i) + z4(j)]

(six-layer cell) b = 2.5222 [xd0(i) + 1
3, yd0(i), zd0(i) + 1/6 + z4(j)]

c = 12.354 [xd0(i) + 2/3, yd0(i), zd0(i) + 2/6 + z4(j)]
z4 = [0 1/2]

G1 G0 cell with layers a = 4.3371 [xg0(i) + f1(z), yg0(i) + f2(z), z5(j)]
displaced in relation to each b = 2.5041 z5 = z2 [ z3

other along the a and b axes c = 33.331 f1, f2 described in text
G2 G0 cell with layers a = 4.3371 [xg0(i) + f1(z), yg0(i) + f2(z), z5(j) + f3(z)]

displaced in relation to each b = 2.5041 f3 described in text
other along the a, b and c axes c = 33.331

G3 G1 cell with a = 4.3371 [xg0(i) + f1(z), yg0(i) + f2(z), z5(j) + f4(x,y,z)]
randomly buckled layers b = 2.5041 f4 described in text

c = 33.331



4.1. Rietveld method

According to Warren (1941), the expression for the inten-

sity of diffracted radiation I contains three main multipliers,

which are F2, the square of the structure factor corresponding

to the ‘ideal’ lattice, the two-dimensional interference function

and the term describing the randomness of the interlayer

orientation

I ¼ F2 sin2
ð�=�Þðs� s0ÞN1a

sin2
ð�=�Þðs� s0Þa

sin2
ð�=�Þðs� s0ÞN2b

sin2
ð�=�Þðs� s0Þb

�
X
m3

exp½ð2�i=�Þðs� s0Þðm3cþ rndðm3Þaþ rndðm3ÞbÞ�
X

m3

�:

As the aim of the present work is to explain the behavior of

the intensities of the main X-ray reflections in relation to each

other, the Rietveld method (Rietveld, 1969) may be applied:

this allows the effect of various types of distortion of the

original ‘ideal’ lattice on the intensities of the 001 and 10 lines

to be estimated. Although this method has been developed for

periodic structures and does not allow the full analysis of

disordered structures, it easily reveals changes in the layer

structure (assuming that ‘randomness’ in the mutual layer

orientation of the original and refined structures remains the

same). The relative intensities of the changes in F2(hk0) and

F2(00l) change. We have used the graphite-like cell G0 (all

cells are listed in Table 1) consisting of ten flat layers as the

inital pseudo-unit cell for Rietveld analysis.

We used four additional functions that correspond to the

structural defects to describe the initial and final pseudo-unit

cells. The function f1(x,y,z) characterizes the buckling and

takes values from 0 (flat layers g0) up to 0.5139/c (diamond-

like layers d0); three variables point to the mutual indepen-

dence of the atom displacements within a layer. f2(z) and f3(z)

characterize the layer stacking faults and take the values from

the unit interval [0, 1], while the variable z shows that the

function takes the same value for all the atoms of a given layer.

The function f4(z) describes the layer displacement from the

ideal position. The PowderCell program (Kraus & Nolze, 1996

was used for the refinement of the atomic coordinates.

4.2. Ab initio calculation of powder patterns of B–C–N
layered clusters

The comprehensive analysis of disordered layered struc-

tures is possible only within the framework of the direct

calculation of diffraction patterns for finite-sized clusters with

preset defects. The clusters have been constructed employing

the sandwich model with alternating graphite-like carbon and

BN layers, as suggested by Hubaček & Sato (1995). The

calculations were made using the Debye (1915) equation,

which relates the intensity of the scattered radiation to the

scattering angle

I sð Þ ¼
1þ cos2 2�

2

� �X
p

X
q

fpfq

sin srpq

srpq

;

where s = 4�sin �/�, fp and fq are the atomic scattering factors

of atoms p and q, and rpq is the distance between atoms p and

q. The atom positions are given by a vector

Rn
m1m2m3

¼ Rm1m2m3
þ rn þ Rsl þ Rd þ Rb;

where Rm1m2m3
¼ m1aþm2bþm3c is the translation vector,

rn is the basis vector of the atom n in a unit cell of ideal two-

dimensional lattices, Rsl ¼ rnd m3ð Þaþ rnd m3ð Þb is the slip

vector of layer m3 along a and b crystallographic axes,

Rd ¼ rnd m3ð Þc is the vector corresponding to the variation of

spacing between the m3 and (m3 � 1) layers,

Rb ¼ rnd m1;m2;m3; nð Þc is the vector that defines the buck-

ling of layer m3 (specifies the shift along the c axis of each n

atom in the m1m2 cell). The layers have been rotated using the

rotation operator Rz �ð Þ with � ¼ rndðm3Þ. We have calculated

the diffraction patterns for clusters containing from 2000 to

5000 atoms. To construct clusters we used a structural unit

comprising the diamond-like pseudo-unit cell D0, which is

formed by six buckled layers with an interlayer spacing of

2.059 Å which corresponds to d111 of diamond. The simulation

was performed using the MATLAB program package (The

MathWorks, 2002).
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Figure 1
Diffraction patterns of turbostratic g-BC2N taken at room temperature
and various pressures.



5. Results and discussion

5.1. X-ray data: reversible changes of powder pattern shape

Our experiments have shown that a pressure increase at

room temperature is accompanied by a pronounced decrease

in the intensity of the 00l lines of the initial graphite-like BN–

C solid solutions (Fig. 1). Thus, upon compression up to

20 GPa, the intensity of the strongest 001 line of graphite-like

BC2N decreases by a factor of 6, and at 25 GPa this line almost

disappears. This cannot be explained by the pressure-induced

preferred orientation of the crystallites, because the diffrac-

tion plane normal was parallel to the axis of the diamond–

anvil cell, with which the more compressible c direction tends

to align, and increases in the 00l line intensities are expected in

this case. At the same time, a change of the diffraction pattern

in the region of the 10 asymmetrical line of the turbostratic

structure is observed. The intensity of scattering in this region

increases, the profile of the line becomes increasingly

symmetrical and its maximum shifts towards 2.07 Å, which is

close to the line positions observed for the 111 reflections of

diamond and cubic BN. The reconstruction proceeds at room

temperature and completely terminates at pressures of the

order 25 GPa. A similar evolution of diffraction patterns

under pressure has been observed for all turbostratic graphite-

like B–C–N phases.

Our in situ experiments have shown that changes in the

diffraction patterns of turbostratic BN–C solid solutions are

fully reversible up to pressures of the order 30 GPa. This

indicates that the total disappearance of the 001 lines under

pressure is caused not by the destruction of the layered

structure, but by an abrupt change in the interlayer spacing

from 2.7 Å (compressed turbostratic phase) to 2.1 Å (spacing

between buckled layers forming a diamond-like structure) or

by some specific change of layer structure that could weaken

the inter-layer reflections. Thus, what we are observing is a

phase transformation of turbostratic g-BC2N into a high-

pressure phase, which proceeds over a wide pressure range

and terminates at 25–30 GPa.

5.2. Rietveld analysis: variation of interlayer spacing and
random buckling

The Rietveld refinement of the z coordinates of each

graphite-like layer in the G1 cell reveals that the experimen-

tally observed J001 � J10 relation between line intensities in

diffraction patterns of turbostratic g-BC2N up to 10 GPa can

be satisfactorily explained assuming that the initial structure is

disordered with respect to interlayer spacings (G2 cell, see

Fig. 2). A similar type of disordering has been previously

observed for partially graphitized carbon (Franklin, 1951). In

our case, it is likely that in the course of the g-BC2N

compression, a non-uniform change in the relative orientation

of the layers takes place, which is accompanied by a non-

uniform approach between layers, giving rise to a layered

structure with various interlayer spacings. The calculated

patterns and experimental data are in good agreement, while

the deviation of the layer position along the c axis has not

exceeded 0.1 Å [according to Franklin (1951), the corre-

sponding value for carbon phases is ca 0.1 Å].

The J001 < J10 relation, which is experimentally observed at

pressures above 10 GPa, can be explained assuming that the

layers are buckled. Fig. 3 shows the diffraction pattern

obtained by the Rietveld refinement of the z-coordinates of

each atom in the G1 cell. The pattern corresponds to a

structure with ‘randomly’ buckled layers (cell G3). It should be

noted that in the framework of the Rietveld formalism an

increase in J10 stems from the appearance of additional intense

lines with l = 0 near the tenth line of the initial turbostratic

phase, which points to a decrease in symmetry of the pseudo-

unit cell under pressure. However, the 001 line still remains

intense. Thus, the assumption of ‘random’ buckling is not
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Figure 2
Hypothetical structure and diffraction patterns of turbostratic g-BC2N at
5.6 GPa (the solid line indicates the experimental pattern, the dashed line
the pattern obtained from a Rietveld refinement of the z-coordinates of
flat layers).

Figure 3
Hypothetical structure and diffraction patterns of turbostratic g-BC2N at
15.7 GPa (the solid line shows the experimental pattern, the dashed line
indicates the pattern obtained from a Rietveld refinement of the z-
coordinates of individual atoms).



sufficient to explain the complete disappearance of the 001

line in the patterns of turbostratic g-BC2N at high pressures.

5.3. Simulation of diffraction patterns: ordered buckling and
stepwise change of interlayer spacings

The results of the simulation of diffraction patterns have

shown that for a compressed turbostratic structure, the

change-over from flat to buckled layers is accompanied by a

decrease in the 001 line intensity and a rise in the 10 line

intensity. However, with the ordered buckling (g2 cell), a total

disappearance of the 001 line is not observed as well as in the

case of the ‘random’ buckling (g1 cell). The only possible

explanation for the disappearance of the 001 line is a

discontinuous change of interlayer distance under pressure.

When considering the discontinuous change, all the layers do

not collapse at the same pressure. Below 25 GPa, the 001 line

is always present and moves as expected when the pressure

increases. Above 15 GPa, the abrupt change in interlayer

spacings at a given pressure occurs only between certain pairs

of layers. The fraction of compressed turbostratic graphite-like

structure decreases with pressure. Finally, the total disap-

pearance of the initial phase is observed at ca 25 GPa.

In order to describe the experimental diffraction patterns at

pressures above 25 GPa, which are characterized by an intense

band in the region of the 111 line of diamond-like phases and

by the absence of bands in the region of other lines (220, 311),

we have simulated patterns of layered structures with inter-

layer spacings of 2.1 Å corresponding to d111 of the diamond-

like phases. The disturbance of the ordering along the c axis of

the diamond-like buckled layers of a diamond-like structure

(layers built on the base of d0 and g2 cells) tends to increase

the intensity of the 10 line of the resulting disordered layered

structure compared with other lines at higher angles (Fig. 4).

5.4. Model of high-pressure behavior of turbostratic phase

For ordered graphite-like phases, the buckling of layers

under pressure is a necessary stage of the martensitic trans-

formation at room temperature (Britun & Kurdyumov, 2000;

Mao et al., 2003). Thus, Mao et al. (2003) have recently

reported that buckling of the graphite layers under hydrostatic

compression occurs at lower pressures than the formation of

the dense phase and is accompanied by splitting of the 100 and

110 in-plane reflections of the initial phase and by line

broadening. In a similar manner, buckling of the layers should

proceed in the course of the compression of turbostratic

structures (Tg0, see Table 2). Under pressure the layers

approach each other and the interlayer interaction intensifies

(the role of the repulsive forces increases), with the result that

the atoms tend to occupy the energetically preferred positions

by displacement relative to each other. Finally, at some suffi-

ciently high pressure buckling occurs (Tg1 or Tg2 structures).

The abrupt approach between buckled layers then gives rise to

a structure similar to Td0 (see Fig. 5), corresponding to

patterns taken at pressures above 20 GPa. This may be caused

by reaching some critical value of buckling, which allows the

layers to approach each other, or by changes in the mutual

orientation of layers owing to rotation and displacement. The

change in mutual orientation occurs because of the increasing

role of repulsive forces between the layers, leading to other

types of one-dimensional disorder [i.e. different types of
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Figure 4
Calculated diffraction pattern of the one-dimensionally disordered
structure, which is formed by properly buckled layers (dashed line),
and the experimental pattern taken at 25.8 GPa (solid line).

Table 2
Turbostratic structures.

Lattice parameters: � = � = � = 90�.

Structure Description Lattice parameters (Å)

Tg0 Turbostratic structure with a = 4.3371
g0 layers stacked b = 2.5041
along the c axis c = 3.4†

Tg1 Turbostratic structure with a = 4.3371
g1 layers stacked b = 2.5041
along the c axis c = 3.0†

Tg2 Turbostratic structure with a = 4.3371
g2 layers stacked b = 2.5041
along the c axis c = 2.7†

Td0 Turbostratic structure with a = 4.3686
d0 layers stacked b = 2.5222
along the c axis c = 2.1†

† In general, the parameter may vary from 2.1 up to 3.4.

Figure 5
Structures of the initial turbostratic g-BC2N and the high-pressure phase
formed by close-packed buckled layers.



‘rnd(m3)’ functions describing the lattice defects] than those

found in the original turbostratic phase. As the diffraction

patterns corresponding to the initial turbostratic phase

completely recover their original shape as soon as the pressure

is released, it may be concluded that the layers remain in the

region of the elastic forces over the whole range of pressures

under study and the formation of covalent bonds between the

layers does not occur. According to the first-principles analysis

of a continuous transition path from rhombohedral graphite to

diamond (Fahy et al., 1986), no inter-layer bonding occurs until

the inter-atomic distance is within 10% of the C—C bond

length in diamond. This result is consistent with our model of

the disordered high-pressure phase.

6. Conclusions

In the course of compression at room temperature, all

turbostratic graphite-like B–C–N phases show similar beha-

vior that is indicative of the phase transformation associated

with a discontinuous change of interlayer distance. The

suggested mechanism includes the buckling (sp2-to-sp3 tran-

sition) and change of the mutual orientation of layers. The

initial turbostratic phase passes into the disordered high-

pressure phase consisting of close-packed buckled layers with

a diamond-like structure (Fig. 5). The transformation is fully

reversible and the formation of covalent bonds between the

layers does not occur.
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